Vibration Isolation Platform for Long Range Optical Communications, Phase I

Completed Technology Project (2013 - 2013)

Project Introduction

Optical communication links provide higher data transfer rates with lower mass, power, and volume than conventional radio-frequency links. For deep space applications at long operational ranges, high performance stabilization of the space terminal data link is required. To meet this need, CDI proposes a novel application of our free-floating isolation platform. Based upon a Shuttleproven technology, this approach yields 6-DOF isolation from the disturbances of the host vehicle while providing high-bandwidth active stabilization to attenuate both payload disturbances as well as any residual disturbances transferred from the base across the power/data umbilical. The proposed approach is designed to achieve better than 0.5microradian-rms stabilization for all frequencies above 0.1Hz when operating in a space environment. Phase I develops the proposed design concept, performs architecture trade studies, and predicts performance to establish the feasibility of the approach. Using an available free-floating isolation platform and a 2-axis low-g testbed, the design concept is prototyped and demonstrated on hardware in a simulated low-q environment (TRL-5). Phase II proceeds with the development of a prototype system that will be space qualified through comprehensive ground testing (TRL-6). Technology demonstration flight tests will be proposed on sRLVs and/or ISS platforms (e.g., WORF, OPALS upgrade), achieving a TRL-7 maturity by the end of Phase II.

Primary U.S. Work Locations and Key Partners

Vibration Isolation Platform for Long Range Optical Communications

Table of Contents

Project Introduction	1
Primary U.S. Work Locations	
and Key Partners	1
Project Transitions	2
Images	2
Organizational Responsibility	2
Project Management	2
Technology Maturity (TRL)	2
Technology Areas	3
Target Destinations	3

Small Business Innovation Research/Small Business Tech Transfer

Vibration Isolation Platform for Long Range Optical Communications, Phase I

Completed Technology Project (2013 - 2013)

Organizations Performing Work	Role	Туре	Location
Controlled Dynamics, Inc.	Lead Organization	Industry	Huntington Beach, California
Jet Propulsion Laboratory(JPL)	Supporting Organization	NASA Center	Pasadena, California

Primary U.S. Work Locations

California

Project Transitions

O

May 2013: Project Start

November 2013: Closed out

Closeout Documentation:

• Final Summary Chart(https://techport.nasa.gov/file/140711)

Images

Project Image

Vibration Isolation Platform for Long Range Optical Communications (https://techport.nasa.gov/imag e/131133)

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Organization:

Controlled Dynamics, Inc.

Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Project Management

Program Director:

Jason L Kessler

Program Manager:

Carlos Torrez

Principal Investigator:

Scott Green

Technology Maturity (TRL)

Small Business Innovation Research/Small Business Tech Transfer

Vibration Isolation Platform for Long Range Optical Communications, Phase I

Completed Technology Project (2013 - 2013)

Technology Areas

Primary:

- **Target Destinations**

Technologies

The Sun, Earth, The Moon, Mars, Others Inside the Solar System, Outside the Solar System

